

QUÍMICA

QUÍMICA – Ficha 21

SOLUCIÓN A LOS EXÁMENES

ACCESO UNIV 25 2016

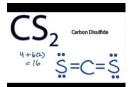
Problema 1 (5 puntos)

El yodo (I_2) es un sólido que se obtiene por tratamiento de salmueras con cloro (CI_2) según la reacción:

2 NaI (s) +
$$Cl_2$$
 (g) $\rightarrow l_2$ (s) + 2 NaCI (s)

- a) Calcule la cantidad (en kg) de yodo que se obtiene a partir de 100 kg de Nal. (2 puntos)
- b) ¿Qué volumen (en litros) ocuparán 50 kg de Cl₂ a una temperatura de 127 °C y a una presión de 1900 mmHg? **(1,5 puntos)**
- c) Calcule la variación de entalpía estándar de la reacción. Indique si se trata de una reacción exotérmica o endotérmica. (1,5 puntos)

Datos


Masas atómicas relativas: Na = 23; CI = 35,5; I = 126,9. ΔH^o_f [NaI (s)] = - 310,97 kJ/mol; ΔH^o_f [NaCI (s)] = - 411,15 kJ/mol. R = 0,082 atm·L·mol⁻¹·K⁻¹. 760 mmHg = 1 atm.

```
2 NaCl
                2 NaI
                                   Cl_2(g)
                                                    I_2
Mr
                 149.9
                                                  253.8
                 100.000 g
                                                   i?
m(g)
n = m/Mr
                100000/149.9
                 667,11 moles
                Si 2 moles de NaI
a)
                                       dan \dots 1 mol de I_2
                   667.11 -----x
                x = 667,11 . 1/2 = 333,56 moles de I_2
                n = m/Mr
                                m = n. Mr = 333,56. 253,8 = 84656,4 g = 84,7 kg de I_2
        m(Cl_2) = 50 \text{ kg}
b)
        Mr = 71
                                n = m/Mr = 50000 / 71 = 704,23 \text{ moles Cl}_2
                                 P = 1900 / 760 = 2.5 atm
                                T = 127 \, ^{\circ}C = 127 + 273 = 400 \, \text{K}
                                 R = 0.082...
        P.V = nRT
                                 V = nRT/P = (704,23.0,082.400) / 2,5 = 9239,5 L
c) \Delta H^0 = 2.(-411,15) - 2.(-310,97) = -822,3 + 621,94 = -200,36 \text{ kJ}
                                                                          EXOTÉRMICA
```

Cuestión 1 (2,5 puntos)

a) Represente la estructura electrónica de Lewis y describa la geometría prevista por el modelo RPECV y prediga razonadamente el carácter polar o apolar de las moléculas: CS₂, CH₄ y H₂O. **(1,5 puntos)**

Datos: Números atómicos, Z: Z(H) = 1; Z(C) = 6, Z(O) = 8; Z(S) = 16.

b) Formule o nombre, según convenga: (1 punto)

, ,	
Ca(OH) ₂	
Hidrógenosulfato de sodio	
HBrO	
Hg(NO ₃) ₂	
Óxido de estaño(IV)	
CH ₃ —CH—CH ₂ —CH—CH ₃ CH ₃ CH ₃ CH ₃	
1,2-propanodiol	
CH ₃	
Metil-fenil-éter	
CH ₃ -COOCH ₃	
	Ca(OH) ₂ Hidrógenosulfato de sodio HBrO Hg(NO ₃) ₂ Óxido de estaño(IV) CH ₃ —CH—CH ₂ —CH—CH ₃ CH ₃ 1,2-propanodiol CH ₃ Metil-fenil-éter

- 1) Hidróxido de calcio
- 2) NaHSO₄
- 3) Ácido hipobromoso
- 4) Nitrato de mercurio (II) o dinitrato de mercurio
- 5) Sn_2O_4 SnO_2
- 6) 2,4-dimetilpentano
- 7) CH₂OH-CHOH-CH₃
- 8) Metilbenceno
- 9) CH₃-O-benceno
- 10) Etanoato de metilo

Cuestión 2 (2,5 puntos)

Se dispone de 250 mL de una disolución 0,4 M de ácido yodhídrico (HI). Teniendo en cuenta que el HI es un ácido fuerte, calcule:

- a) La cantidad, en gramos, de yoduro de hidrógeno disuelto. (1 punto)
- b) El pH de la disolución. (0,5 puntos)
- c) El volumen de disolución de hidróxido de potasio (KOH) 0,5 M necesario para neutralizar la disolución anterior de HI. (1 punto)

Datos: Masas atómicas relativas: H = 1; I = 126,9. $K_w = 10^{-14}$.

HI
$$Mr = 127.9$$
 0.4 M $V = 250 \text{ mL} = 0.25 \text{ L}$

a)
$$M = n/V$$
 $n = V.M = 0.25 . 0.4 = 0.1 mol$ $n=m/Mr$ $m = n.Mr = 0.1 . 127.9 = 12.79 g$

b) pH = $-\log [H_3O^+] = -\log 0.4 = 0.40$

c) HI + KOH
$$\rightarrow$$
 KI + H₂O

$$V_a=0.25 L$$
 ξV_b ? $M_a=0.4$ $M_b=0.5$

$$V_a.M_a = V_b.M_b$$
 $V_b.= V_a.M_a / M_b = 0.25 \cdot 0.4 / 0.5 = 0.2 L = 200 mL$

Cuestión 3 (2,5 puntos)

a) Ajuste la siguiente ecuación química: (1,5 puntos)

$$Cr_2O_7^{2-}(ac) + Cl^-(ac) + H^+(ac) \rightarrow Cr^{3+}(ac) + Cl_2(g) + H_2O(l)$$

- b) Identifique la sustancia oxidante y la reductora. (0,5 puntos)
- c) Indique el estado de oxidación del cromo en la especie $(Cr_2O_7)^{2-}$ y el del cloro en el Cl_2 . (0,5 puntos)

a)
$$Cr_2O_7^{2-} + Cl^- + H^+ \rightarrow Cr^{3+} + Cl_2 + H_2O$$
 $Cr_2O_7^{2-} \rightarrow Cr^{3+}$ $Cl^- \rightarrow Cl_2$

$$Cr_2O_7^{2-} \rightarrow Cr^{3+} \qquad Cl^{-} \rightarrow Cl_2$$

$$Cr_2O_7^{2-} \rightarrow 2 Cr^{3+} \qquad 2 Cl^{-} \rightarrow Cl_2$$

$$Cr_2O_7 \rightarrow 2 Cr$$

 $Cr_2O_7^{2-} \rightarrow 2 Cr^{3+} + 7 H_2O$

$$Cr_2O_7^{2-} + 14 H^+ \rightarrow 2 Cr^{3+} + 7 H_2O$$

 $Cr_2O_7^{2-} + 14 H^+ + 6e^- \rightarrow 2 Cr^{3+} + 7 H_2O$

$$2 \text{ Cl}^{-} - 2 \text{e}^{-} \rightarrow \text{ Cl}_{2}$$

$$Cr_2O_7^{-2-} + 14 H^+ + 6e^- \rightarrow 2 Cr^{3+} + 7 H_2O$$

2 Cl⁻ - 2e⁻ \rightarrow Cl₂

$$Cr_2O_7^{2-} + 14 H^+ + 6e^- \rightarrow 2 Cr^{3+} + 7 H_2O$$

3. $(2 Cl^- - 2e^- \rightarrow Cl_2)$

$$Cr_2O_7^{2-} + 14 H^+ + 6e^- \rightarrow 2 Cr^{3+} + 7 H_2O$$

6 Cl⁻ - 6e⁻ \rightarrow 3 Cl₂)

$$Cr_2O_7^{\ 2^-} + 14\ H^+ + 6e^- \rightarrow 2\ Cr^{3+} + 7\ H_2O$$
 6 Cl^- - $6e^ \rightarrow 3\ Cl_2$

$$\text{Cr}_2\text{O}_7^{2^-} + 14 \text{ H}^+ + 6\text{e}^- + 6 \text{ Cl}^- - 6\text{e}^- \rightarrow 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O} + 3 \text{ Cl}_2$$

 $\text{Cr}_2\text{O}_7^{2^-} + 14 \text{ H}^+ + 6 \text{ Cl}^- \rightarrow 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O} + 3 \text{ Cl}_2$

b)
$$Cr_2O_7^{2-} + 14 H^+ + 6e^- \rightarrow 2 Cr^{3+} + 7 H_2O$$
 El $Cr_2O_7^{2-}$ coge electrones (+6e): SE REDUCE 6 Cl $^-$ - 6e $^ \rightarrow$ 3 Cl $_2$ El Cl $^-$ pierde electrones (-6e): SE OXIDA Luego el $Cr_2O_7^{2-}$ que se reduce es el OXIDANTE Y el Cl $^-$ que se oxida es el REDUCTOR

c)
$$Cr_2O_7^{2-}$$
 $los O: 7 . (-2) = -14$ $Como deben quedar 2- en el $Cr_2O_7^{2-}$ $El Cr (+) debe neutralizar a 12- para que queden 2- Luego los 2 Cr deben tener 12+ $Por lo que a cada Cr le corresponden 6+ Cl_2 $0$$$$

ACCESO CFGS

JUNIO 2016

RESPONDE A 5 DE LAS 6 PREGUNTAS PROPUESTAS. (2 puntos cada pregunta)

Pregunta 1. Completa la siguiente tabla si se sabe que 1 gramo de hidrógeno reacciona exactamente con 8 gramos de oxígeno para dar agua.

Hidrógeno + Oxígeno → Agua				
1 g	8 g			
2 g		18 g		
		36 g		
1 g	10 g			

- a) Agua = 9 g
- b) Oxígeno = 16 g
- c) Hidrógeno = 4 g Oxígeno = 32 g

d) Agua = 9 g (sobran 2 g de oxígeno)

Pregunta 2.

- a) Calcula qué volumen ocuparán 2,5 moles de dióxido de azufre (SO₂) en condiciones normales.
- b) ¿cuál será su masa?.
- c) Razona (no calcules) si 2,5 moles de trióxido de azufre (SO₃) ocuparán un volumen mayor, igual o menor que los 2,5 moles del dióxido de azufre.

Datos: Ar O = 16 u. Ar S = 32u.

a) Es un gas: P.V = nRT Hipótesis de Avogadro: 1 mol de cualquier gas en condiciones normales siempre ocupa V = 22,4 L

Luego 2,5 moles ocuparán V = 2,5 . 22,4 = 56 L

- b) $Mr(SO_2) = 64$ n=m/Mr m=n.Mr=2,5.64 =**160 g**
- c) Ocuparán el mismo volumen siempre que estén en las mismas condiciones de P y T

Pregunta 3.

- a) Escribe la configuración electrónica del cloro (Z = 17) y del calcio (Z = 20).
- b) Indica el grupo y el periodo de cada elemento.
- c) Explica cuál de los dos tendrá mayor energía de ionización.
- a) b) Cl (Z=17): 1s2 2s2 2p6 3s2 3p5 3s² 3p⁵ Grupo VII o 17 Período 3 Ca (Z=20): 1s2 2s2 2p6 3s2 3p6 4s2 4s² Grupo II o 2 Periodo 4
- c) El Ca tiene 4 capas y el Cl tiene 3, luego el Ca tiene mayor volumen atómico y los electrones de la capa de valencia están más alejados del núcleo, luego están menos atraídos y es más fácil quitárselos, luego tendrá mayor El el Cl porque están más atraídos.

Pregunta 4.

Identifica el tipo de fuerzas intermoleculares de cada una de las especies que se nombran y explica las siguientes observaciones:

- a) A temperatura ambiente el flúor (F_2) y el cloro (Cl_2) son gases, el bromo (Br_2) es líquido i el iodo (l_2) es sólido.
- b) La temperatura de ebullición del agua (H_2O) es mayor que la de su homólogo el sulfuro de hidrógeno (H_2S)
- a) En el Br₂ y en el I₂ hay fuerzas intermoleculares de Van der Waals, por eso no son gases.
- b) En el H_2O hay fuerzas intermoleculares de puente de H, por ello su temperatura de ebullición es mayor que en el H_2O ya que éste no tiene puente de H

Pregunta 5.

- a) Calcula el pH de una disolución de ácido clorhídrico 0,005 M.
- b) Calcula el volumen de la disolución anterior que se necesita para neutralizar 75 mL de una disolución de hidróxido de sodio 0,01 M. Esta es la reacción de neutralización:

$$HCI(ac) + NaOH(ac) \rightarrow NaCI(ac) + H_2O(I)$$

- a) [HC1] = 0.005 M $[H_3O^+] = 0.005 \text{ M}$ $pH = -log [H_3O^+] = -log 0.005 = 2.3$
- b) $HCl + NaOH \rightarrow NaCl + H_2O$

 $V_a = i$? $V_b = 75 \text{ mL} = 0.075 \text{ L}$

 $M_a = 0.005$ $M_b = 0.01$

 $V_a.M_a = V_b.M_b$ $V_a.= V_b.M_b / M_a = 0.075 \cdot 0.01 / 0.005 = 0.15 L = 150 mL$

Pregunta 6. Escribe el nombre o la fórmula, según corresponda, de los siguientes compuestos:

 SiO_2 Trifluoruro de fósforo HCI Sulfuro de hierro (II)

 $CH_3CH_2CH_2CH_3$ Metano

 ${\rm CH_3CH_2OH}$ Ácido propanoico ${\rm CH_3\text{-}NH_2}$ 1,2-dicloroetano

Dióxido de silicio PF₃

Cloruro de hidrógeno Fe_2S_2 FeS

Butano CH₄

 $\begin{array}{cc} Et a nol & CH_3\text{-}CH_2\text{-}COOH \\ Metilamina & CH_2Cl\text{-}CH_2Cl \end{array}$

ACCESO UNIV 25 2015

Problema 1 (5 puntos)

Por combustión de propano, C₃H₈, con suficiente cantidad de oxígeno, se obtienen 300 litros de CO₂ medidos a 0,96 atm y 285 K según la reacción de combustión:

$$C_{3}H_{8}\left(g\right)+5\text{ }O_{2}\left(g\right)\rightarrow3CO_{2}\left(g\right)+4\text{ }H_{2}O\left(g\right)$$

- a) Calcule el número de moles de todas las sustancias que intervienen en la reacción y el número de moléculas de agua obtenidas en las condiciones indicadas. (1,5 puntos)
- b) Calcule la masa, en gramos, de propano que ha reaccionado. (1,5 puntos)
- c) Calcule el volumen, en litros, de aire necesario, medido en condiciones normales (1 atm y 273 K), suponiendo que la composición volumétrica del aire es 20% de oxígeno y 80% de nitrógeno. (2 puntos)

Datos: masas atómicas relativas: C = 12; H = 1; R = 0.082 atm·L/(K·mol); $N_A = 6.023 \cdot 10^{23}$.

Cuestión 1 (2,5 puntos)

a) Describa la geometría prevista por el modelo RPECV para las moléculas CCl₄, CHCl₃ y CH₂Cl₂. Prediga, en cada caso, si la molécula será polar o no. (1,5 puntos)

Datos: números atómicos: Z(H) = 1; Z(C) = 6; Z(CI) = 17.

b) Indique, razonadamente, cuáles de las siguientes combinaciones de números cuánticos son conjuntos válidos y cuáles no lo son, para un átomo de oxígeno en su estado fundamental. (1 punto)

	n	- 1	mı	ms
i)	1	0	1	1/2
ii)	2	1	-1	1/2
iii)	2	3	1	-1/2
iv)	3	1	1	-1/2

Datos: número atómico: Z(O) = 8.

Cuestión 2 (2,5 puntos)

Se añade bromo molecular (Br₂) a una disolución acuosa que contiene yoduro de sodio (NaI) a 25 °C.

- a) Formule las semireacciones de oxidación y reducción. (1 punto)
- b) Escriba la reacción química espontánea global y calcule el Eº. (1 punto)
- c) Indique la especie oxidante y la reductora. (0,5 puntos)

Datos: potenciales estándar de reducción: $Br_2/Br^- = + 1,07 \text{ V}$; $I_2/I^- = + 0,53 \text{ V}$.

Cuestión 3 (2,5 puntos)

Se dispone de una disolución acuosa de NaOH 0,5 M. Calcule:

- a) El pH de la disolución. (1 punto)
- b) El pH de la disolución resultante de mezclar 25,0 mL de la disolución de NaOH 0,5 M con 5,0 mL de otra disolución acuosa de HCl 1 M. (1.5 puntos)

Datos: $K_w = 10^{-14}$.

ACCESO CFGS JULIO 2015

Pregunta 1. Datos: Ar Ca = 40 u. Ar Cl = 35,5 u.

- a) Queremos preparar 200 mL de una disolución de cloruro de calcio ($CaCl_2$) 0,5 M. Calcula los gramos de cloruro de calcio que tendremos que pesar.
- **b)** Calcula el volumen de la disolución anterior que se necesita para preparar 100 mL de disolución de cloruro de calcio 0,1 M.

Pregunta 2. El magnesio tiene tres isótopos naturales:

²⁴₁₂Mg ²⁵₁₂Mg ²⁶₁₂Mg

- a) Indica el número de protones, neutrones y electrones de cada isótopo.
- b) La masa atómica del magnesio es 24,3 u. Razona qué isótopo será el más abundante.

Pregunta 3. Relaciona el tipo de sustancia (sustancia molecular, sólido covalente, sólido iónico, metal) con las siguientes propiedades:

- a) Son muy buenos conductores de la corriente eléctrica.
- b) Son insolubles en agua y tienen puntos de fusión muy muy altos.
- c) Sustancias que funden a temperatura baja.
- d) Sólidos no conductores que al fundir si lo son.
- e) Son dúctiles y maleables.
- f) Son solubles en agua.
- g) Sustancias cuyas propiedades dependen de las fuerzas de Van der Waals.
- h) Bajo ninguna circunstancia pueden conducir la corriente eléctrica.

Pregunta 4. Datos: los números atómicos de H, C, N y Cl son 1, 6, 7 y 17, respectivamente.

- a) Dibuja la estructura de Lewis de las siguientes moléculas: HCI, NH₃ y CCI₄
- b) Razona, en función de la polaridad de cada una de estas moléculas, el tipo de fuerzas intermoleculares que se pueden establecer en cada caso.

Pregunta 5. Ajusta las siguientes reacciones y clasifícalas como reacción de síntesis, de combustión, ácido-base o redox.

a)
$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

b)
$$HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + H_2O$$

c) HgO
$$\rightarrow$$
 Hg + O₂

d)
$$N_2 + H_2 \rightarrow NH_3$$

Pregunta 6. El carburo de calcio (CaC_2) reacciona con el agua formándose hidróxido de calcio $(Ca(OH)_2)$ y gas acetileno (C_2H_2) según la siguiente reacción: **Datos:** Ar C = 12 u. Ar Ca = 40 u.

$$CaC_2 + 2 H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

- a) Calcula el volumen de acetileno, medido en condiciones normales, que se obtendrá a partir de 80 g de carburo de calcio.
- b) Calcula el volumen de acetileno que realmente se obtendrá si se sabe que el rendimiento de la reacción es del 60 %.